MICROSCOPIC HEMATURIA AND DIFFUSE NECROTIZING GLOMERULONEPHRITIS

Hatim Q. AlMaghrabi, MD, FRCPC
Consultant at King Abdulaziz Medical City (NGHA)
Jeddah
Case Presentation

• 70 years old female
• Known hypertensive on medications
• Otherwise stable
• C/O: Nausea, vomiting, fever, SOB and fluctuation of LOC progressing over two to three weeks, following URTI
• Negative symptoms:
 – No skin rashes or joint pain/swelling
 – No SOB, cough or hemoptysis
 – No chest pain, palpitations
• On examination:

PR 95/min RR 16/min BP 160/90 Temp 37.9 C

– she looked sick

– Respiratory examination was unremarkable.
Laboratory Workup

• Hematological workup:
 WBC 120 Hb 10.5
 PLT 586 ESR 67
 CRP 272

• Urinalysis:
 – Microscopic hematuria
 – Active sediment (WBC and red blood cell casts)
 – Mild proteinuria
Laboratory Workup

- Renal function tests:
 - Na 134
 - K 4.2
 - urea 32
 - creatinine 376 uMol/L
- 24 hour urine protein 398 mg/L/24 hours
- Serologic work-up:
 - C-ANCA 12
 - P-ANCA 6
 - Normal <5
 - C3 1.12
 - C4 0.45
 - Anti-GBM 30 (result available after biopsy)
 - Serological markers for autoimmune disease, viral hepatitis B & C, CMV, EBV, Brucella antibody all unremarkable at that time.
Renal Biopsy
Immunofluorescence

IgG
Immunofluorescence

• Four glomeruli with the following pattern:
 – IgG 3+ linear capillary wall
 – C3 2+ capillary wall
 – Negative stains: IgA, IgM, C1q and albumin.
 – No tubular basement membrane staining
Diagnosis

DIFFUSE NECROTIZING GLOMERULONEPHRITIS WITH CRESCENTS, SEE COMMENT
Follow-up

• Patient received steroids and immunosuppressive therapy. Subsequently plasmapheresis was added to the regimen.
• Patient required dialysis
• Few days later patient developed worsening of dry cough, hemoptysis and bilateral interstitial lung infiltrates
Anti-glomerular Basement Membrane Disease (Anti-GBM disease)

• Historical Perspectives:
 – In 1919, Ernest Goodpasture reported an 18 years old male with hemoptysis and acute renal failure after flu-like illness.
 – Sheer and Grossman reported linear IgG immunofluorescence in glomeruli of two patients
 – Later, Lerner established anti-GBM antibodies as a cause for pulmonary-renal syndrome and in isolated crescentic glomerulonephritis
Epidemiology

- Rare disease, 1 per 1,000,000/year in US
- Bimodal age distribution, 2nd and 6th decade
- No gender predilection:
 - Male predilection in 2nd decade: pulmonary renal involvement more common
 - Female predilection in 6th decade: often isolated crescentic GN
Frequency of Different Types of Crescentic Glomerulonephritis in Renal Biopsy Specimens Evaluated by the University of North Carolina Nephropathology Laboratory

<table>
<thead>
<tr>
<th>Age</th>
<th>N</th>
<th>Anti-GBM CGN</th>
<th>PI CGN</th>
<th>IC CGN</th>
<th>Other CGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>632</td>
<td>15</td>
<td>60</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>1-20</td>
<td>73</td>
<td>12</td>
<td>42</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>21-60</td>
<td>303</td>
<td>15</td>
<td>48</td>
<td>35</td>
<td>3</td>
</tr>
<tr>
<td>61-100</td>
<td>256</td>
<td>15</td>
<td>79</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Epidemiology

• In Saudi Arabia, Immune-complex-mediated GN maybe most common cause of GN

• Lupus nephritis 50% of cases
Etiology & Pathogenesis

• Multiple hits or double hits

• Autoantibody:
 – Autoantibody against NC1 domain of alpha-3 chain of Collagen (COL) IV
 – Alpha 3 chain of COL IV mapped to q35-37 region of the long arm of chromosome 2
 – Conformational changes allow formation of neo-epitopes
 – Dissociation of alpha-3 type IV collagen increased autoantibody binding affinity
Etiology & Pathogenesis

- Evidence of direct anti-GBM antibody pathogenicity:
 - Post transplant recurrence in the setting of elevated serum anti-GBM antibody
 - Correlation between antibody level and disease severity
 - De novo disease in animal models exposed to human anti-GBM
 - Elevated anti-GBM antibody prior to disease onset
Etiology & Pathogenesis

- Other immune effectors: T-cells, macrophages
- Genetic predisposition:
 - Association with HLA-DR and DQ
- Precipitating events:
 - Hydrocarbon or cigarette smoking
 - Maybe triggering event
 - Possible infections:
 - Mini-epidemics, USA and England
 - Agent?
Etiology & Pathogenesis

• Kidney transplantation for Alport syndrome:
 – Exposure to non-endogenous GBM following transplantation
 – 3-5% of Alport syndrome patients develop de novo Anti-GBM disease after transplant
Type IV collagen chain
Clinical Features

- Pulmonary hemorrhage
- Acute renal failure: rare cases with renal sparing
- Hematuria
- Proteinuria: rarely nephrotic range
Laboratory work-up

- Serum anti-GBM antibodies:
 - Different methods: ELISA, RIA immunoblot and IIFM
 - Sensitivity different methods 95-100%
 - Specificity 91-100%
 - False negative rate <5%
 - False positive rate 1%: due to antibodies directed against other types of type IV collagen
 - Low-level anti-GBM antibody titer specific to alpha3 COL IV NC1 have been reported in healthy controls.

Microscopic Features

• Cellular crescents:
 – Often >80% of glomeruli
 – Segmental fibrinoid necrosis
 – Periglomerular granulomatous inflammation or giant cells, not specific for anti-GBM
 – GBM or Bowman’s capsule BM breaks
 – Uninvolved glomerular tuft showing no features of immune complex GN (endocapillary hypercellularity, mesangial hypercellularity, wire-loops, etc…)
 – Fibrocellular or fibrous crescents are not typical
Microscopic Features

• TMA-like lesions
• Interstitial inflammation:
 – Patients with anti-tubular BM antibodies
• Necrotizing vasculitis rare
Immunofluorescence features

- Strong linear IgG >3+ staining of GBM
- Typically IgG, rarely IgA
- Linear IgG staining can be seen in diabetic patients
- 20% tubular basement membrane
Ultrastructural Features

- Non-specific
- Absent immune-complex deposition
- Breaks or disruption of GBM
Relationship Between ANCA and Anti-GBM GN (Dual Antibody CGN)

- Reports of elevated ANCA months to years prior to development of Anti-GBM disease
- 21-38% of patients of anti-GBM disease have elevated ANCA levels, usually 2/3 P-ANCA (MPO)
- Specific contribution of ANCA to Anti-GBM is unknown
- ANCA may allow surface presentation of alpha COL IV NC1 domain to antigen presentation
- Disease relapse is usually in the form of ANCA
 - Ther Apher Dial. 2009 Aug;13(4):278-81
Relationship Between ANCA and Anti-GBM GN (Dual Antibody CGN)

• Prior studies show patient with double antibodies showed more favorable course with significant renal recovery following initiating dialysis

<table>
<thead>
<tr>
<th>ANTI-GBM</th>
<th>ANCA</th>
<th>AVERAGE % OF CRESCENTS</th>
<th>RENAL SURVIVAL @ 1y</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
<td>72%</td>
<td>15%</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>58%</td>
<td>10%</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>45%</td>
<td>65%</td>
</tr>
</tbody>
</table>
ANCA-related glomerulonephritis

- Rare disease, incidence 4 Per million
- 60% of patients with CGN are ANCA positive
- Mean Age 60 years old
Pathogenesis

• Antibodies made to neutrophil lysosomal components (ANCA)
• Antibodies react to either PR3 or MPO, constituents of lysosomal proteins in neutrophils and monocytes
• ANCA-initiated signal transduction pathway of neutrophil activation, FcR participation
• Neutrophils activate alternative complement pathway
• Leukocyte activation, followed by adhesion and endothelial damage
Pathogenesis

• **Trigger:**
 - Presumed immune dysregulation
 - Evidence of molecular mimicry
 - Infection as trigger
 - Drugs: PTU, hydralazine, penicillamine, minocycline

• **Other targets:**
 - Plasminogen antibodies in 25% of ANCA positive patients
 - Anti-LAMP-2 reported in most patients with PIGN
Update on classification of ANCA-related glomerulonephritis
Renal survival in different classes

Follow up in years to renal failure

Renal survival

Focal
Crescentic
Mixed
Sclerotic

Conclusions

• Case of diffuse necrotizing glomerulonephritis with crescents, associated with C-ANCA and Anti-GBM antibodies
• Overview on Anti-GBM disease
• Literature review on relationship between ANCA and anti-GBM disease (Dual antibody CGN)
• Update on ANCA histological classification
• Questions???